1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
use super::keys::PublicKey;
use crate::{
    did::DidMethodKey,
    util::{Bytes64, Bytes65},
};
use codec::{Decode, Encode, MaxEncodedLen};
use frame_support::{dispatch::Weight, weights::RuntimeDbWeight};
use sha2::{Digest, Sha256};
use sp_core::{ed25519, sr25519, Pair};
use sp_runtime::traits::Verify;
use sp_std::{borrow::Borrow, convert::TryInto};

pub use crate::util::signature::*;

/// Attempts to retrieve a key associated with the given entity.
pub trait GetKey<K> {
    /// Attempts to get an associated key.
    fn key<T: crate::did::Config>(&self) -> Option<K>;
}

#[derive(PartialEq, Eq, Encode, Decode, Clone, Debug, Default)]
pub struct SigTypes<V> {
    sr: V,
    ed: V,
    secp: V,
}

pub trait ForSigType: Sized {
    fn weight_for_sig_type<T: frame_system::Config>(
        &self,
        for_sr25519: impl FnOnce() -> Weight,
        for_ed25519: impl FnOnce() -> Weight,
        for_secp256k1: impl FnOnce() -> Weight,
    ) -> Weight {
        self.for_sig_type(for_sr25519, for_ed25519, for_secp256k1)
            .unwrap_or_default()
    }

    fn for_sig_type<R>(
        &self,
        for_sr25519: impl FnOnce() -> R,
        for_ed25519: impl FnOnce() -> R,
        for_secp256k1: impl FnOnce() -> R,
    ) -> Option<R>;

    /// Return counts of different signature types in given `SignatureWithNonce` as 3-Tuple as (no. of Sr22519 sigs,
    /// no. of Ed25519 Sigs, no. of Secp256k1 sigs). Useful for weight calculation and thus the return
    /// type is in `Weight` but realistically, it should fit in a u8
    fn count_sig_types(auths: impl IntoIterator<Item = impl Borrow<Self>>) -> SigTypes<u64> {
        let mut counts = SigTypes::default();

        for auth in auths {
            if let Some(ptr) = auth.borrow().for_sig_type(
                || &mut counts.sr,
                || &mut counts.ed,
                || &mut counts.secp,
            ) {
                *ptr += 1;
            }
        }

        counts
    }

    /// Computes weight of the given `SignatureWithNonce`. Considers the no. and types of signatures and no. of reads. Disregards
    /// message size as messages are hashed giving the same output size and hashing itself is very cheap.
    /// The extrinsic using it might decide to consider adding some weight proportional to the message size.
    fn auth_weight(
        auths: impl IntoIterator<Item = impl Borrow<Self>>,
        db_weights: RuntimeDbWeight,
    ) -> Weight {
        let SigTypes { sr, ed, secp } = Self::count_sig_types(auths);

        db_weights
            .reads(sr + ed + secp)
            .saturating_add(SR25519_WEIGHT.saturating_mul(sr))
            .saturating_add(ED25519_WEIGHT.saturating_mul(ed))
            .saturating_add(SECP256K1_WEIGHT.saturating_mul(secp))
    }
}

/// An abstraction for a signature.
#[derive(
    Encode, Decode, scale_info_derive::TypeInfo, Debug, Clone, PartialEq, Eq, MaxEncodedLen,
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[scale_info(omit_prefix)]
pub enum DidMethodKeySigValue {
    /// Signature for Ed25519 is 64 bytes
    Ed25519(Bytes64),
    /// Signature for Secp256k1 is 65 bytes
    Secp256k1(Bytes65),
}

impl DidMethodKeySigValue {
    /// Get weight for signature verification.
    /// Considers the type of signature. Disregards message size as messages are hashed giving the
    /// same output size and hashing itself is very cheap. The extrinsic using it might decide to
    /// consider adding some weight proportional to the message size.
    pub fn weight(&self) -> Weight {
        match self {
            DidMethodKeySigValue::Ed25519(_) => ED25519_WEIGHT,
            DidMethodKeySigValue::Secp256k1(_) => SECP256K1_WEIGHT,
        }
    }

    pub fn verify(
        &self,
        message: &[u8],
        public_key: &DidMethodKey,
    ) -> Result<bool, VerificationError> {
        macro_rules! verify {
            ( $message:ident, $sig_bytes:ident, $pk_bytes:ident, $sig_type:expr, $pk_type:expr ) => {{
                let signature = $sig_type(**$sig_bytes);
                let pk = $pk_type(**$pk_bytes);
                signature.verify($message, &pk)
            }};
        }

        let result = match (public_key, self) {
            (DidMethodKey::Ed25519(pk_bytes), DidMethodKeySigValue::Ed25519(sig_bytes)) => {
                verify!(
                    message,
                    sig_bytes,
                    pk_bytes,
                    ed25519::Signature,
                    ed25519::Public
                )
            }
            (DidMethodKey::Secp256k1(pk_bytes), DidMethodKeySigValue::Secp256k1(sig_bytes)) => {
                let hash = Sha256::digest(message).try_into().unwrap();
                let m = libsecp256k1::Message::parse(&hash);
                let sig = libsecp256k1::Signature::parse_overflowing(
                    sig_bytes[..][0..64].try_into().unwrap(),
                );
                let p = libsecp256k1::PublicKey::parse_compressed(pk_bytes).unwrap();
                libsecp256k1::verify(&m, &sig, &p)
            }
            _ => Err(VerificationError::IncompatibleKey)?,
        };

        Ok(result)
    }

    pub fn ed25519(msg: &[u8], pair: &ed25519::Pair) -> Self {
        DidMethodKeySigValue::Ed25519(pair.sign(msg).0.into())
    }

    pub fn secp256k1(msg: &[u8], sk: &libsecp256k1::SecretKey) -> Self {
        DidMethodKeySigValue::Secp256k1(match sign_with_secp256k1(msg, sk) {
            SigValue::Secp256k1(value) => value,
            _ => unreachable!(),
        })
    }
}

impl From<ed25519::Signature> for DidMethodKeySigValue {
    fn from(ed25519::Signature(sig): ed25519::Signature) -> Self {
        DidMethodKeySigValue::Ed25519(sig.into())
    }
}

/// An abstraction for a signature.
#[derive(
    Encode, Decode, scale_info_derive::TypeInfo, Debug, Clone, PartialEq, Eq, MaxEncodedLen,
)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[scale_info(omit_prefix)]
pub enum SigValue {
    /// Signature for Sr25519 is 64 bytes
    Sr25519(Bytes64),
    /// Signature for Ed25519 is 64 bytes
    Ed25519(Bytes64),
    /// Signature for Secp256k1 is 65 bytes
    Secp256k1(Bytes65),
}

impl SigValue {
    /// Get weight for signature verification.
    /// Considers the type of signature. Disregards message size as messages are hashed giving the
    /// same output size and hashing itself is very cheap. The extrinsic using it might decide to
    /// consider adding some weight proportional to the message size.
    pub fn weight(&self) -> Weight {
        match self {
            SigValue::Sr25519(_) => SR25519_WEIGHT,
            SigValue::Ed25519(_) => ED25519_WEIGHT,
            SigValue::Secp256k1(_) => SECP256K1_WEIGHT,
        }
    }

    pub fn verify(
        &self,
        message: &[u8],
        public_key: &PublicKey,
    ) -> Result<bool, VerificationError> {
        macro_rules! verify {
            ( $message:ident, $sig_bytes:ident, $pk_bytes:ident, $sig_type:expr, $pk_type:expr ) => {{
                let signature = $sig_type(**$sig_bytes);
                let pk = $pk_type(**$pk_bytes);
                signature.verify($message, &pk)
            }};
        }

        let result = match (public_key, self) {
            (PublicKey::Sr25519(pk_bytes), SigValue::Sr25519(sig_bytes)) => {
                verify!(
                    message,
                    sig_bytes,
                    pk_bytes,
                    sr25519::Signature,
                    sr25519::Public
                )
            }
            (PublicKey::Ed25519(pk_bytes), SigValue::Ed25519(sig_bytes)) => {
                verify!(
                    message,
                    sig_bytes,
                    pk_bytes,
                    ed25519::Signature,
                    ed25519::Public
                )
            }
            (PublicKey::Secp256k1(pk_bytes), SigValue::Secp256k1(sig_bytes)) => {
                let hash = Sha256::digest(message).try_into().unwrap();
                let m = libsecp256k1::Message::parse(&hash);
                let sig = libsecp256k1::Signature::parse_overflowing(
                    sig_bytes[..][0..64].try_into().unwrap(),
                );
                let p = libsecp256k1::PublicKey::parse_compressed(pk_bytes).unwrap();
                libsecp256k1::verify(&m, &sig, &p)
            }
            _ => Err(VerificationError::IncompatibleKey)?,
        };

        Ok(result)
    }

    pub fn sr25519(msg: &[u8], pair: &sr25519::Pair) -> Self {
        SigValue::Sr25519(pair.sign(msg).0.into())
    }

    pub fn ed25519(msg: &[u8], pair: &ed25519::Pair) -> Self {
        SigValue::Ed25519(pair.sign(msg).0.into())
    }

    pub fn secp256k1(msg: &[u8], sk: &libsecp256k1::SecretKey) -> Self {
        sign_with_secp256k1(msg, sk)
    }
}

impl From<ed25519::Signature> for SigValue {
    fn from(ed25519::Signature(sig): ed25519::Signature) -> Self {
        SigValue::Ed25519(sig.into())
    }
}

impl From<sr25519::Signature> for SigValue {
    fn from(sr25519::Signature(sig): sr25519::Signature) -> Self {
        SigValue::Sr25519(sig.into())
    }
}

// Weight for Sr25519 sig verification
pub const SR25519_WEIGHT: Weight = Weight::from_ref_time(65_000_000);
// Weight for Ed25519 sig verification
pub const ED25519_WEIGHT: Weight = Weight::from_ref_time(60_000_000);
// Weight for ecdsa using secp256k1 sig verification
pub const SECP256K1_WEIGHT: Weight = Weight::from_ref_time(160_000_000);

pub fn sign_with_secp256k1(msg: &[u8], sk: &libsecp256k1::SecretKey) -> SigValue {
    let hash = Sha256::digest(msg).try_into().unwrap();
    let m = libsecp256k1::Message::parse(&hash);
    let sig = libsecp256k1::sign(&m, sk);
    let mut sig_bytes: [u8; 65] = [0; 65];
    sig_bytes[0..64].copy_from_slice(&sig.0.serialize()[..]);
    sig_bytes[64] = sig.1.serialize();
    SigValue::Secp256k1(sig_bytes.into())
}

#[cfg(test)]
mod tests {
    use crate::common::get_secp256k1_keypair;

    use super::*;

    use sp_core::Pair;

    #[test]
    fn signature_verification() {
        // Check that the signature should be wrapped in correct variant of enum `SigValue`.
        // Trying to wrap a Sr25519 signature in a SigValue::Ed25519 should fail.
        // Trying to wrap a Ed25519 signature in a SigValue::Sr25519 should fail.
        let msg = vec![26u8; 350];

        // The macro checks that a signature verification only passes when sig wrapped in `$correct_sig_type`
        // but fails when wrapped in `$incorrect_sig_type`
        macro_rules! check_sig_verification {
            ( $module:ident, $pk_type:expr, $correct_sig_type:expr, $incorrect_sig_type:expr ) => {{
                let (pair, _, _) = $module::Pair::generate_with_phrase(None);
                let pk_bytes = pair.public().0;
                let pk = $pk_type(pk_bytes.into());
                assert!(pk.can_sign());
                let sig_bytes = pair.sign(&msg).0;
                let correct_sig = $correct_sig_type(sig_bytes.into());

                // Valid signature wrapped in a correct type works
                assert!(correct_sig.verify(&msg, &pk).unwrap());

                // Valid signature wrapped in an incorrect type does not work
                let incorrect_sig = $incorrect_sig_type(sig_bytes.into());
                assert!(incorrect_sig.verify(&msg, &pk).is_err())
            }};
        }

        check_sig_verification!(
            sr25519,
            PublicKey::Sr25519,
            SigValue::Sr25519,
            SigValue::Ed25519
        );
        check_sig_verification!(
            ed25519,
            PublicKey::Ed25519,
            SigValue::Ed25519,
            SigValue::Sr25519
        );

        let (sk, pk) = get_secp256k1_keypair(&[1; 32]);
        assert!(pk.can_sign());
        let correct_sig = sign_with_secp256k1(&msg, &sk);
        let incorrect_sig = SigValue::Ed25519([10; 64].into());
        assert!(correct_sig.verify(&msg, &pk).unwrap());
        assert!(incorrect_sig.verify(&msg, &pk).is_err());
    }
}