1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
use codec::{Decode, Encode};
use frame_support::ensure;
use itertools::Itertools;
use sp_std::collections::btree_set::BTreeSet;
/// A data structure that holds up to two optional `BTreeSet` instances.
///
/// This structure allows for computing set operations (like intersection and union)
/// on potentially absent sets.
pub struct MaybeDoubleSet<V: Ord>(pub Option<BTreeSet<V>>, pub Option<BTreeSet<V>>);
impl<V: Ord + Clone> MaybeDoubleSet<V> {
/// Computes the intersection of the two sets.
///
/// # Returns
///
/// - `Some(BTreeSet<V>)`: If either or both sets are present, returns a `BTreeSet`
/// containing the intersection of the sets.
/// - `None`: If both sets are `None`.
///
/// # Examples
///
/// ```
/// extern crate alloc;
///
/// use alloc::collections::BTreeSet;
/// use dock_core::util::MaybeDoubleSet;
///
/// let set1: BTreeSet<i32> = [1, 2, 3].iter().cloned().collect();
/// let set2: BTreeSet<i32> = [2, 3, 4].iter().cloned().collect();
///
/// let maybe_set = MaybeDoubleSet(Some(set1), Some(set2));
/// let intersection = maybe_set.intersection();
/// assert_eq!(intersection, Some([2, 3].iter().cloned().collect()));
/// ```
pub fn intersection(self) -> Option<BTreeSet<V>> {
let Self(first, second) = self;
Some(match (first, second) {
(Some(first), Some(second)) => first.intersection(&second).cloned().collect(),
(Some(first), None) => first,
(None, Some(second)) => second,
(None, None) => None?,
})
}
/// Computes the union of the two sets.
///
/// # Returns
///
/// - `Some(BTreeSet<V>)`: If either or both sets are present, returns a `BTreeSet`
/// containing the union of the sets.
/// - `None`: If both sets are `None`.
///
/// # Examples
///
/// ```
/// extern crate alloc;
///
/// use alloc::collections::BTreeSet;
/// use dock_core::util::MaybeDoubleSet;
///
/// let set1: BTreeSet<i32> = [1, 2, 3].iter().cloned().collect();
/// let set2: BTreeSet<i32> = [2, 3, 4].iter().cloned().collect();
///
/// let maybe_set = MaybeDoubleSet(Some(set1), Some(set2));
/// let union = maybe_set.union();
/// assert_eq!(union, Some([1, 2, 3, 4].iter().cloned().collect()));
/// ```
pub fn union(self) -> Option<BTreeSet<V>> {
let Self(first, second) = self;
Some(match (first, second) {
(Some(first), Some(second)) => first.union(&second).cloned().collect(),
(Some(first), None) => first,
(None, Some(second)) => second,
(None, None) => None?,
})
}
}
/// Defines the rules for including items in a set.
#[derive(Encode, Decode, Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serde", serde(rename_all = "camelCase"))]
#[derive(scale_info_derive::TypeInfo)]
#[scale_info(omit_prefix)]
pub enum InclusionRule<V: Ord> {
AnyOf(BTreeSet<V>),
All(BTreeSet<V>),
}
/// An error indicating that the supplied item wasn't found.
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
pub struct ItemNotFound;
impl<V: Ord> InclusionRule<V> {
/// Instantiates `Self::AnyOf` using supplied items.
pub fn any_of(items: impl IntoIterator<Item = V>) -> Self {
Self::AnyOf(BTreeSet::from_iter(items))
}
/// Instantiates `Self::All` using supplied items if size is greater than 0, otherwise returns `None`.
pub fn all(items: impl IntoIterator<Item = V>) -> Option<Self> {
let set = BTreeSet::from_iter(items);
(!set.is_empty()).then_some(Self::All(set))
}
/// Checks if provided set satisfies the inclusion rule.
pub fn satisfies(&self, to_check: &BTreeSet<V>) -> bool {
match self {
Self::AnyOf(values) => !values.is_disjoint(to_check),
Self::All(values) => values.is_subset(to_check),
}
}
/// Checks if the underlying rule values set contains supplied value.
pub fn contains(&self, value: &V) -> bool {
match self {
Self::AnyOf(values) => values.contains(value),
Self::All(values) => values.contains(value),
}
}
/// Excludes supplied value and returns resulting inclusion rule.
pub fn exclude(self, value: &V) -> Result<Option<Self>, ItemNotFound> {
ensure!(self.contains(value), ItemNotFound);
let next = match self {
Self::AnyOf(_) => None,
Self::All(mut values) => {
values.remove(value);
(!values.is_empty()).then_some(Self::All(values))
}
};
Ok(next)
}
/// Applies the specified inclusion rule to a set of items.
///
/// This method processes the items according to the inclusion criteria defined by the rule (`AnyOf` or `All`).
/// It transforms the items using the provided function `f` and collects them into a `BTreeSet`.
///
/// **An iterator created by `f` must produce items in ascending order**.
pub fn apply_rule<I, F>(self, f: F) -> BTreeSet<I::Item>
where
F: FnMut(V) -> I,
I: IntoIterator,
I::Item: Ord,
{
match self {
Self::AnyOf(items) => items.into_iter().flat_map(f).collect(),
Self::All(items) => {
let len = items.len();
items
.into_iter()
.map(f)
.map(|iter| iter.into_iter().dedup())
.kmerge()
.dedup_with_count()
.filter_map(|(count, value)| (count == len).then_some(value))
.collect()
}
}
}
}